
The Impact of Cellular Representation on Finite State
Agents for Prisoner’s Dilemma

Daniel Ashlock
Department of Mathematics and Statistics
University of Guelph, 50 Stone Road East

Guelph, Ontario, N1G 2R4

dashlock@uoguelph.ca

Eun-Youn Kim
Department of Mathematics

Iowa State University
Ames, Iowa, 50010

eunykim@iastate.edu

ABSTRACT
The iterated prisoner’s dilemma is a widely used computa-
tional model of cooperation and conflict. Many studies re-
port emergent cooperation in populations of agents trained
to play prisoner’s dilemma with an evolutionary algorithm.
Cellular representation is the practice of evolving a set of
instructions for constructing a desired structure. This pa-
per presents a cellular encoding for finite state automata
and specializes it to play the iterated prisoner’s dilemma.
The impact on the character and behavior of finite state
agents that results from using the cellular representation is
investigated. For the cellular representation presented a sta-
tistically significant drop in the level of cooperation is found.
Other differences in the character of the automaton gener-
ated with a direct and cellular representation are reported.
This paper forms part of an ongoing study of the impact
of representation on evolved agents for playing prisoner’s
dilemma.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous

General Terms
Design

Keywords
Cellular Representation, Prisoner’s Dilemma, Evolutionary
Computation

1. INTRODUCTION
The Prisoner’s Dilemma [4, 3] is a classic model of cooper-

ation and conflict in game theory. Two agents each decide,
without communication, whether to cooperate (C) or de-
fect(D). The agents receive individual payoffs depending on
the actions taken. The payoffs used in this study are shown

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

C

Player 2
D

C (3,3)

Player 1

D

(0,5)

(5,0)

(1,1)

Figure 1: Score matrix used for the prisoner’s
dilemma in this study. Scores are given for (Player
1,Player 2).

in Figure 1. In the Iterated Prisoner’s Dilemma (IPD) the
agents play many rounds of the Prisoner’s Dilemma. IPD
is widely used to demonstrate emergent cooperative behav-
iors in populations of selfishly acting agents [7, 8, 13] and is
often used to model biological systems [15], including soci-
ology [12], psychology [14], and economics [11]. It has been
tacitly assumed in many publications that the representa-
tion of the IPD is inconsequential to the outcome of the
simulation.
This paper introduces a cellular representation for finite

state automata. These automaton are used to play the it-
erated prisoner’s dilemma. A cellular representation stores
directions for building a structure rather than directly stor-
ing the byte-level specification for (or parameters of) the
structure. Cellular representation, for artificial neural nets,
was introduced by Frederic Gruau [9, 10]. Cellular encodings
are analogous to incorporating a form of developmental bi-
ology into the representation. Transforming the DNA code
for an organism into the complete organism requires a com-
plex developmental biology in nature. The cellular encoding
undergoes a similar but far simpler process, reading a set of
directions and using them to construct, in stages, the final
form of the digital organism.
The remainder of the paper is structured as follows. In

Section 2 we specify the finite state automaton used together
with their direct and cellular representations. In Section 3
we give the design of the experiments and specify the data
collected. In Section 4 we present results. Section 5 presents
conclusions and places the results in the context of an earlier
study that found substantial variation in cooperation across
other representations [1].

59

1 2

C

C/C

D/C

D/DC/C

Figure 2: An example of a finite state automaton
for playing the iterated prisoner’s dilemma. This
machine is an implementation of tit-for-two-tats the
defects only if its opponent has defected on the last
two actions.

2. DIRECT AND CELLULAR REPRESEN-
TATIONS

The finite state automaton used here are Mealy machines
augmented with an initial action. These automaton are de-
scribed in some detail in [2]. When a pair of finite state
automata are used to play the iterated prisoner’s dilemma
the initial actions are used to initiate play. Thereafter the
two automata each use the other machine’s last action as
their current input, generating their action from their fi-
nite state transitions. An example of the type of machine
encoded by both the direct and cellular representations is
given in Figure 2. The initial action is the label on the sin-
gle sourceless arrow. Transitions are given by arrows and
labeled with input/output pairs.
The direct representation uses the following chromosome

or data structure. It stores finite state automata as a pair
of integer variables giving the initial action and initial state
together with an array of states. Each state contains the
four integers describing the next state and responding ac-
tion for transitions out of that state in response to an input
of defection or cooperation. The variation operators for the
direct representation are as follows. Crossover performs a
two-point crossover of the array of states, associating the
initial state and action with the first state. The mutation
operator changes one of the integers in the machine, replac-
ing it with a valid value selected uniformly at random. This
integer is the initial state or action 5% of the time each, a
transition 40% of the time, or an action 50% of the time.
The usage of these operators and other algorithm parame-
ters are given in the experimental design.
The cellular representation for finite state automata mod-

ifies an initial one state machine with a series of editing
commands, using a string of editing commands as the chro-
mosome. The initial machine has an initial action the action
with the smallest numerical index in the coding scheme (co-
operation in this case). The initial machine returns its input
as its next output, echoing the other player’s actions. We
call this machine an echo machine. For IPD the echo ma-
chines is an encoding of the famous tit-for-tat strategy.
The rules for modifying the initial echo machine into the

machine encoded by the cellular representation are given in
Table 1. In order to execute these rules it is necessary to
use structures not in the final finite state automata. The
first of these structures is the current state pointer. This
pointer is initialized to point to the echo automaton’s sole

state and designates which state to which to apply an edit-
ing command. This pointer may be moved and it may drag
a transition arrow with it. This is done by using the pin
command to associate one of the transition arrows out of
the current state with the current state pointer. Later the
release command places the head of the “pinned” transition
arrow on the current state as designated by the position of
the current state pointer. While pinned the transition ar-
row’s head moves with the current state pointer and is im-
plicitly released if still pinned at the end of the contruction
of an automaton. The second structure beyond the nominal
finite state automata is a collection of pointers connecting
each state in the machine to the state that was duplicated to
create it. These pointers are used to execute the A(ncestor)
command. Example 1 gives and example of the construc-
tion of a machine implementing the strategy Pavlov from an
echo (tit-for-tat) machine.

Example 1. Let’s look at the results of starting with Echo
(Tit-for-Tat in the Prisoner’s Dilemma) and applying the
following sequence of editing commands: D1, M1, P0, F1,
F0, or, if we issue the commands using the inputs and out-
puts of the Prisoner’s Dilemma: DD, MD, PC, FD. FC .
The current state is denoted by a double circle on the state.

Tit-for-Tat is the starting point.

1

C

C/C D/D

DD inserts a copy of 1 as the new destination of 1’s D-
transition.

1

C

C/C D/D

C/C
D/D

2

MD moves the active state to state 2.

60

Command Effect
B (Begin) Increment the initial action modulo the number of actions.
Fn (Flip) Increment the response associated with the transition for input n out of the current state modulo

the number of actions.
Mn (Move) Move the current state pointer to the destination of the transition for input n out of the current

state.
Dn(Duplicate) Create a new state that duplicates the current state as the new destination of the transition for

input n out of the current state.
Pn (Pin) Pin the transition arrow from the current state for input n to the current state. It will move with

the current state until another pin command is executed.
R (Release) Release the pinned transition arrow, if there is one.
In(Square) Move the transition for input n out of the current state to point to the state you would reach if you

made two transitions associated with n from the current state.
A(Ancestor) Move the current state to the state that was duplicated to create the current state or do not move

it if the current state is the initial state.

Table 1: Cellular rules for creating finite state automata. For IPD n takes on the possible values Cooperate
and Defect. Incrementing an action is done modulo the number of actions and so simply exchanges C and D.

1

C

C/C D/D

C/C
D/D

2

PC pins the C-transition from the current state to the cur-
rent state.

1

C

C/C D/D

2

C/C

D/D
FD increments the response on the D-transition from the
current state.

1

C

C/C D/D

2

C/C

D/C
FC increments the response on the C-transition from the
current state.

1

C

C/C D/D

2

D/C

C/D

So, this sequence of editing commands transforms our start-
ing automaton, Tit-for-Tat, into a version of Pavlov.

Notice that only two of the thirteen rules, DC and DD

generate a new state. This means the number of states in a
automaton is equal to the number of Dn rules in the cellular
encoding plus one.
The variation operators for the cellular representation are

quite simple. The crossover is two point crossover of the
string of editing rules. Mutation consists of choosing a po-
sition in the string of editing rules uniformly at random and
replacing the character at that position with a new one se-
lected uniformly at random. Details of how these operators
are applied are given in the section on experimental design.

2.1 Completeness
The baseline among the experiments presented here are

those using the direct representation. Here we demonstrate
that the automaton that can be represented by the direct
representation can all be found in the cellular representation.

Definition 1. Accessible states in a finite state automa-
ton are the states that can be reached from the initial state.

The behavior of a finite state automaton only depends on
its accessible states. We don’t have to consider about inac-
cessible states when we prove the cellular representation is
complete.

Definition 2. The depth of the state i is the number arcs
in the shortest path from the initial state 1 to the state i. It
is denoted as depth(i). A depth of a finite state automaton
is maximum of all depths of states of G and is denoted as
depth(G).

61

Notice a state with depth k cannot have an incoming arc
from a state with depth less than k− 1, otherwise it’s depth
should be less than k and it contradicts that its depth is k.
Therefore a state with depth k can have incoming arc only
from a state with depth k − 1. For the same reason, a state
with depth k cannot have an outgoing arc to a state with
depth more than k + 1.

Theorem 1. Every finite state automaton (ignoring states
inaccessible from the initial state) is specified by cellular
rules in Table 1. In other words, the given cellular repre-
sentation in Table1 is complete.

Proof. we just need to consider making states and chang-
ing transition arrows since we can set the responses using
Fn when the state is created without any problem.
Let V be a set of states and E a set of transitions of a finite

machine. Then a finite state automaton can be considered
as a digraph G with a set of vertices V and a set of arcs E.
It is enough to show that a digraph G can be specified by
the cellular rules and it can be proved by the mathematical
induction on the depth of a finite state automaton G.
If the depth of a finite state automaton is 0, G has only

one state which is the initial state. Just change it’s action
using Fn as appropriate, and we are done.
Suppose this Theorem holds when the depth of a finite

state automaton is less than k. Consider the case that the
depth of a finite state automaton is k. Let Vk−1 is the set of
states whose depth are k − 1 and Vk the set of states whose
depth are k. Delete all states in Vk from G and change the
incoming arcs to Vk to loops i.e. let G′=G-Vk+{(i,i)| (i,j)
is arc of G such that i in Vk−1 and j in Vk}. Clearly, each
state of G′ has two outgoing arcs and it is connected from
the initial state so it is a finite states automaton. By the
way that it is constructed, its depth is k − 1. Thus it is
specified using the cellular encoding rules by the induction
hypothesis. For each outgoing arc (i, j) from Vk−1 to Vk

in G, there is a loop (i, i) in G′. Create the state j which
duplicates the state i of G′ and move the current state from
i to j. Then we have an arc (i, j). Pin and release its two
transitions then it become an echo machine.
If the state j has a transition which reaches to any state

h in V − Vk, then pin that transition of the current state j.
Move the current state form j to i using A as needed. The
rule A allows the current state in anywhere to get back to
the initial state 1 and the rule Mn allows the current state
to move from the initial state to any state. In other words,
the editing pointer can get from the current state to every
other state. It is possible to make states inaccessible from
the initial state but they are not part of the finite state
automaton and so we may ignore them. In other words,
the editing focus can get from the current state to every
other state using A and Mn. Thus we can move the current
state from the state j to the state h. Release the pinned
transition arrow then we have an arc (j, h). If the state j
has a transition which reaches a state l in Vk and l is not
created yet, then leave that transition as a loop (j, j). Move
the current state to the state l′ in Vk−1 which is connected
to l. Create the state l by the same way that we created
the state j. Move the current state from l to j using A and
Mn. Now, we have state l. Pin the loop (j, j) and move the
current state from j to l then we will have an arc (j, l). If l
is already created then omit the process for creating and do
the same process as above.

If another state g in Vk−1 has an outgoing arc to the state j
in the component, it should corresponds a loop (g, g) in G′.
Thus move the current state to g and pin to that loop and
move the current state back to j using A and Mn.
If there are more states in depth k that should be created

then move current state to a state in depth k − 1 which has
an arc to them using Mn and A and repeat same process as
above until we create all states and arcs. Therefore the finite
state automaton G is specified by the cellular rules.

3. EXPERIMENTAL DESIGN
The experimental design follows that of [2] and [13] in

many details to facilitate comparison across experiments.
Two sets of 400 evolutionary simulations were performed,
one for the direct representation and on for the cellular rep-
resentation. Each simulation was run for 250 generations
with a population of 36 IPD agents. To evaluate fitness a
round robin tournament in which each pair of agents play
150 rounds of IPD was used. Fitness was normalized to
average payoff per play for reporting purposes.
The model of evolution used is a generational evolution-

ary algorithm with a two-thirds elite. In each generation
the most fit two thirds of the population was copied into
the next generation. These are the elite. In sorting the
population to find the elite ties are broken uniformly at ran-
dom. The remaining one-third of the new population was
generated as follows. Pairs of distinct parents were selected
with replacement by roulette selection from the elite. These
parents were copied, the copies subjected to crossover, and
a single mutation applied to each result of the crossover to
generate pairs of members of the new population.
The automata used in the direct representation have 16

states for consistence with previous experiments[1, 2, 13].
The values for initial states and action and all outputs and
transitions were initialized by filling in valid values chosen
uniformly at random. In order to make the automata as
similar as possible across the two representations the length
of the cellular representation was chosen to be 98 editing
commands. Two of the thirteen commands create a new
state and so, on average, executing 97.5 editing commands
will yield a 16 state machine. As we will see in the discussion
section this normalization was probably not that important.
The statistics tracked during evolution were the popula-

tion mean, standard deviation, and maximum of both fitness
and age for each evolutionary simulation performed. The
age of an automaton is initially zero and in incremented
each time the automaton is copied into a new generation
as part of the elite. The age of automata can be used to
track succession. When a new type arises and takes over an
ecology then the maximum and average age drop.

4. RESULTS
It was found that the direct and cellular representations

produce statistically significant differences in the level of co-
operation. Figure 3 shows a plot of 95% confidence interval
for the population mean fitness computer over all 400 evolu-
tionary simulations run for the two representations. While
both exhibit the standard dip-and-rise the cellular represen-
tation moves to its long-term average value far faster.
In [1] the probabilities that a given representation would

be cooperative or at least achieve a better score than a ran-
dom player flipping a fair coin to choose its move were com-

62

1.8

2

2.2

2.4

2.6

2.8

3

0 50 100 150 200 250

A
ve

ra
ge

 p
op

ul
at

io
n

sc
or

e

Generations

95% confidence intervals for population mean fitness.

Direct
Cellular

Figure 3: The 95% confidence intervals, computed over 400 populations, for the population mean fitness in
generations 1-250.

puted. A population is deemed cooperative if its population
mean score per game played is at least 2.8. The reasoning
used to select this cutoff is given in [1]. Briefly, a sixteen
state machine cannot engage in sustained defection as part
of its cyclic behavior and achieve a score above 2.8 when fit-
ness is evaluated with 150 rounds of play. A 95% confidence
interval was computed for the probability of cooperative and
better-than-random play for eight representations: directly
represented finite state automata with 16 states, boolean
logic trees coded with genetic programming, a Markov chain
representation, a lookup table, an alternative genetic pro-
gramming structure called an ISAc list, boolean logic trees
augmented with a time delay operation, and two types of
artificial neural net, one with a bias toward cooperation.
Details of these representations are given in [1].
The confidence intervals on cooperative and better-than-

random play were computed for 100 evolution runs for all
representations except the direct and cellular representations
for finite state automata. For these two representations the
400 runs performed for this paper were used. Because of
this the confidence interval is roughly half as wide for these
two representations. The confidence intervals for all nine
representations are shown in Figures 4 and 5.
The direct and cellular representations exhibit a signifi-

Neural net

Cooperative neural net

Delay tree

ISAc list

Lookup table

Markov chain

Logic tree

Automata

Cellular

0 1

Figure 4: The 95% confidence intervals on the prob-
ability a given representation will be cooperative in
generation 250.

63

Neural net

Cooperative neural net

Delay tree

ISAc list

Lookup table

Markov chain

Logic tree

Automata

Cellular

0 1

Figure 5: The 95% confidence intervals on the prob-
ability a given representation will score better than
random in generation 250.

cant difference for both probability of cooperation and prob-
ability of better-than-random play. Compared with the other
representations the Cellular representation exhibits an inter-
mediate level of cooperativeness and roughly a 75% chance
of playing better than random. Notice that by considering
the confidence intervals for better-than-random play we see
that the cellular representations has behavior significantly
different from all the other representations presented.

5. CONCLUSIONS AND DISCUSSION
This paper tests a cellular representation for finite state

automata in the context of evolving agents to play the it-
erated prisoner’s dilemma. Three measures of performance,
mean population score, probability of cooperative play, and
probability of better-than-random play all clearly separate
the cellular representation from the direct representation.
These performance measures are neither independent nor
completely dependent on one another. They all speak to
the question “is cooperation emerging in this system?”
Comparison with a previous study of eight relatively sim-

ple representations showed that the cellular representation
was in the middle of the pack from the perspective of agents
evolving to a state of cooperative play. The more cellular
representation, which was more complicated from an imple-
mentation perspective, was both different from its own di-
rect representation and roughly as cooperative as two other
representations. These representations were both forms of
genetic programming using parse trees with Boolean opera-
tors.
The experiments demonstrate that completeness of rep-

resentation, proved for the cellular encoding in Section 2.1,
does not tell the entire story. Changing the representation
modifies the distribution of initial strategies and the shape
of the fitness landscape. For the system studied here these
impacts were significant.
The complexity of a strategy coded by a finite state au-

tomaton can be indexed by the number of states in the ma-
chine. For the direct representation this is exactly sixteen
states. For the cellular representation, the initial popula-
tion starts with a shifted binomial distribution of numbers
of states with n = 98 and p = 2

13
and a shift caused by

starting with one state in the initial machine. This yields

a mean of 2 × 2
13
+ 1 = 16.08. The standard deviation

of the number of states in the cellular representation isp
n × p × (1− p) = 3.57. The experimental design inten-

tionally made the mean number of states in the cellular ma-
chine as close as possible to the value for the direct repre-
sentation.
The number of states, however, is a weak measure of com-

plexity. When a representation does not need to use all of
its data then some of the space may be filled in with junk
such as the bloat encountered in genetic programming [5].
This junk space can be used to manage the disruption of
the variation operators and to store things that may be use-
ful after being revealed by a fortuitous crossover. In a finite
state automaton, states that cannot be reached from the ini-
tial state are one possible type of junk. Figure 6 shows the
distribution of the number of states accessible from the ini-
tial state in 100,000 randomly generated machines for both
the direct and cellular representation. The distributions are
almost mirror images with the cellular representation favor-
ing enormously less complex initial automata. The compu-
tations used to generate Figure 6 were performed again on
the 400 final populations of 36 automata. This yields 14,400
rather than 100,000 samples. The resulting distribution of
numbers of states of shown in Figure 7.
Comparison of Figure 6 and 7 suggests that the cellular

representation is locating simpler automata than the direct
representation. Aside from weeding out machines with a
very small number of accessible states from the cellular pop-
ulations there seems to be little change in the distribution,
given the smaller size of the evolved samples.
Prior to performing the research the authors thought that

the cellular representation would lead to machines with a
reasonably large number of accessible states. Each state is
accessible, when created by a duplicate operation, from the
state it duplicates. The pin operation permits the break-
ing of these ties and apparently has a larger impact than
expected.
There are other measures of complexity that “states ac-

cessible from the initial state” for a finite state automata.
If two states produce exactly the same responses for all pos-
sible input strings then those states are equivalent and the
machine can be simplified by identifying those states. The
simplification does not change the strategy encoded by the
finite state automata, it just reduces the number of states re-
quired to implement it. Checking all input strings of a given
length 2n − 1 suffices to document equivalence of states be-
cause a finite state automata must fall into a cycle for strings
of inputs exceeding that length (in fact far more efficient al-
gorithms are possible, but that is beyond the scope of this
paper). The finite state machines obtained for both the
standard and cellular representations were first reduced by
throwing out all states not accessible from the initial state
and then reduced by identifying all sets of equivalent states.
Table 2 gives a 95% confidence interval for the mean num-
ber of states in these doubly reduced machines for both the
standard and cellular representations.
This last quantitation of the automata complexity com-

puted for each representation demonstrate that the two rep-
resentations are sampling the strategy space in substantially
different ways.

6. FUTURE DIRECTIONS
The cellular representation introduced in this paper is one

64

0

5000

10000

15000

20000

25000

5 10 15 20

N
um

be
r

of
 m

ac
hi

ne
s

Number of accessible states

Count of machines with a given number of accessible states.

Direct
Cellular

Figure 6: Counts of the number of automata with a given number of states accessible from the initial state.
This plot is for a sample of 100,000 randomly generated automaton for each of the two representations.

Represen- Mean 95% Confidence
tation states Interval

Standard 10.75 (10.69,10.81)
Cellular 3.54 (3.51,3.57)

Table 2: Mean automata sizes for both representa-
tions after reduction of inaccessible and inequivalent
states.

of many possible cellular representations. New editing op-
erations could be added, old one deleted, or the rate of use
of editing operations could be changed. Reducing or elim-
inating the pin operations, for example, might remove the
potentially confounding problem with the automata having
few accessible states.
This paper is part of an ongoing project to catalog rep-

resentations and understand their impact on the iterated
prisoner’s dilemma and other games. The goal of model-
ing behavior for use in everything from virtual ecology to
digital focus groups waits on an understanding of how rep-
resentation impacts system behavior. Only after substantial
progress has been made in this area can we make agents that

behave in a manner usefully similar to the animals and peo-
ple we wish to model. As the project continues Figures 4
and 5 will continue to grow and will be generalized to other
games.
An important next step is the comparison of data on hu-

man or animal behavior, e.g. [6], to the behavior of various
representations. The project that this study is a part of
seeks to explore a rich enough space of representations that
human (or guppy) like representations are not difficult to
locate when designing a sociological or ethnological simula-
tion.

7. ACKNOWLEDGMENTS
The authors would like to thank David Fogel for contribut-

ing thoughts on the role of granularity in representational
sensitivity and for many stimulating discussions on evolu-
tion of agents playing the iterated prisoner’s dilemma. The
authors also gratefully acknowledge the support of the De-
partment of Mathematics and Statistics of the University of
Guelph in the matter of funding and of space for the second
author.

8. REFERENCES
[1] D. Ashlock and N. Leahy. A representational study of

65

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5 10 15 20

N
um

be
r

of
 m

ac
hi

ne
s

Number of accessible states

Count of machines with a given number of accessible states.

Direct
Cellular

Figure 7: Counts of the number of automata with a given number of states accessible from the initial state.
This plot is for generations 250 of the experimental runs for each representation.

game theoretic simulations. In SMCia/03: Proceedings
of the 2003 IEEE Conference on Soft Computing in
Industrial Applications, pages 67–72, Piscataway NJ,
2003. IEEE Press.

[2] D. Ashlock, M. D. Smucker, E. A. Stanley, and
L. Tesfatsion. Preferential partner selection in an
evolutionary study of prisoner’s dilemma. Biosystems,
37:99–125, 1996.

[3] R. Axelrod. The Evolution of Cooperation. Basic
Books, New York, 1984.

[4] R. Axelrod and W. D. Hamilton. The evolution of
cooperation. Science, 211:1390–1396, 1981.

[5] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.
Francone. Genetic Programming : An Introduction :
On the Automatic Evolution of Computer Programs
and Its Applications. Morgan Kaufmann, San
Francisco, 1998.

[6] L. A. Dugatkin and M. Mesterton-Gibbons.
Cooperation among unrealted individuals: Reciprocal
altruism, byproduct mutalism and group selection in
fishes. Biosystems, 37:19–30, 1996.

[7] D. Fogel. Evolving behaviors in the iterated prisoners
dilemma. Evolutionary Computation, 1(1), 1993.

[8] D. B. Fogel. On the relationship between the duration

of an encounter and the evolution of cooperation in
the iterated prisoner’s dilemma. Working Paper, July
1994.

[9] F. Gruau. Neural Network Synthesis using Cellular
Encoding and the Genetic Algorithm. PhD thesis,
France, 1994.

[10] F. Gruau. Automatic definition of modular neural
networks. Adaptive Behaviour, 3(2):151–183, 1995.

[11] M. Hemesath. Cooperate or defect? russian and
american students in a prisoner’s dilemma.
Comparative Economics Studies, 176:83–93, 1994.

[12] J. M. Houston, J. Kinnie, B. Lupo, C. Terry, and S. S.
Ho. Competitiveness and conflict behavior in
simulation of a social dilemma. Psychological Reports,
86:1219–1225, 2000.

[13] J. H. Miller. The coevolution of automata in the
repeated prisoner’s dilemma. Journal of Economic
Behavior and Organization, 29(1):87–112, January
1996.

[14] D. Roy. Learning and the theory of games. Journal of
Theoretical Biology, 204:409–414, 2000.

[15] K. Sigmund and M. A. Nowak. Evolutionary game
theory. Current Biology, 9(14):R503–505, 1999.

66

